2.2. Основные характеристики оптического волокна

Основные характеристики оптического волокна

Способность оптического волокна передавать информационный сигнал описывается при помощи ряда геометрических и оптических параметров и характеристик, из которых наиболее важными являются затуханиеи дисперсия.

Геометрические параметры.

Помимо соотношения диаметров сердцевины и оболочки, большое значение для процесса передачи сигнала имеют и другие геометрические параметры оптоволокна, например:

  • некруглость (эллиптичность) сердцевины и оболочки, определяемая как разность максимального и минимального диаметров сердцевины (оболочки), деленная на номинальный радиус, выражается в процентах;
  • неконцентричность сердцевины и оболочки – расстояние между центрами сердцевины и оболочки (рис. 1).

Рис 1. Некруглость и неконцентричность сердцевины и оболочки

Геометрические параметры стандартизированы для разных типов оптического волокна. Благодаря совершенствованию технологии производства значения некруглости и неконцентричности удается свести к минимуму, так что влияние неточности геометрии оптоволокна на его оптические свойства оказывается несущественным.

Числовая апертура.

Числовая апертура (NA) – это синус максимального угла падения луча света на торец волокна, при котором выполняется условие полного внутреннего отражения (рис. 2). Этот параметр определяет количество мод, распространяющихся в оптическом волокне. Также величина числовой апертуры влияет на точность, с которой должна производиться стыковка оптических волокон друг с другом и с другими компонентами линии.

Рис 2. Числовая апертура

Профиль показателя преломления.

Преломление света

Для того, чтобы понимать как луч света свободно проходит через световод и никуда не излучается, необходимо знать закон преломления из курса физики. При переходе света из одной среды в другую направление света может меняться.

Направление света меняется за счет того, что разные среды имеют разную плотность. Плотность среды влияет на скорость распространения света. Чем меньше плотность, тем больше скорость распространения света.

 

 

 

Профиль показателя преломления – это зависимость показателя преломления сердцевины от ее поперечного радиуса. Если показатель преломления остается одинаковым во всех точках поперечного сечения сердцевины, такой профиль называется ступенчатым. Среди других профилей наибольшее распространение получил градиентный профиль, при котором показатель преломления плавно увеличивается от оболочки к оси (рис. 3). Помимо этих двух основных, встречаются и более сложные профили.

Одномодовое волокно

Градиентный профиль

Ступенчатый профиль

У градиентного волокна показатель преломления зависит от радиуса. Для многомодового волокна градиентный показатель преломления имеет лучшие характеристики, чем ступенчатое. Это связано с тем, что межмодовая дисперсия значительно меньше, что приводит к большей пропускной способности. Одномодовое волокно имеет значительно меньший диаметр сердцевины по сравнению с многомодовым и, как следствие, из-за отсутствия межмодовой дисперсии, более высокую пропускную способность.

Информация по показателю преломления, как правило, указывается в каталогах и/или на сайтах производителей. Точнее, информация по нескольким показателям, т.к. они разные для разных длин волн (зависимость от длины волны есть для всех сред, кроме абсолютного вакуума). Если вам не удалось найти эту информацию самостоятельно, можно задаваться следующими значениями:

Многомодовое волокно (например, 50/125) 
На длине волны 850 нм групповой показатель составляет 1.483
На длине волны 1300 нм групповой показатель составляет 1.479

Одномодовое волокно
На длине волны 1310 нм показатель составляет 1.467
На длине волны 1550 нм показатель составляет 1.468

Типичные значения n для стекла используемого в качестве оптоволокна лежит между 1.45 и 1.55. Как правило, чем выше показатель преломления, тем меньше скорость в среде передачи.

Сравнение скорости прохождения света через различные среды
Сравнение скорости прохождения света через различные среды

Значения типичного показателя преломления разных производителей и различных типов оптоволокна:

• Corning® LEAF®
n = 1.468 в 1550 нм
n = 1.469 в 1625 нм

• OFS TrueWave® REACH
n = 1.471 в 1310 нм
n = 1.470 в 1550 нм

Затухание (потери).

Затухание –

Оптическое волокно характеризуется двумя важными параметрами: затухание и дисперсией. Чем меньше затухание (потери) и чем меньше дисперсия, тем больше может быть расстояние между регенерационными участками.

Затухание — уменьшение мощности оптического сигнала. Измеряется в децибелах.

P1 — мощность на входе, Вт. P2 — мощность на выходе, Вт.

Затухание – это постепенное ослабление мощности оптического сигнала по мере распространения по оптоволокну, вызванное разными физическими процессами. Величина затухания имеет сложную зависимость от длины волны излучения и измеряется в дБ/км. Затухание служит одним из главных факторов, ограничивающих дальность передачи сигнала по оптическому волокну (без ретрансляции). Затухание возникает вследствие различных физических процессов, происходящих в материале, из которого изготавливается оптоволокно. Основными механизмами возникновения потерь в оптическом волокне являются поглощение и рассеяние. От длины волны света так же зависит затухание. 

  • Поглощение. В результате взаимодействия оптического излучения с частицами (атомами, ионами…) материала сердцевины часть оптической мощности выделяется в виде тепла. Различают собственное поглощение, связанное со свойствами самого материала, и примесное поглощение, возникающее из-за взаимодействия световой волны с различными включениями, содержащимися в материале сердцевины (гидроксильные группы OH, ионы металлов…).
  • Рассеяние света, то есть отклонение от исходной траектории распространения, происходит на различных неоднородностях показателя преломления, геометрические размеры которых меньше или сравнимы с длиной волны излучения. Такие неоднородности являются следствием как наличия дефектов структуры волокна (рассеяние Ми), так и свойствами аморфного (некристаллического) вещества, из которого изготавливается волокно (рэлеевское рассеяние). Рэлеевское рассеяние является фундаментальным свойством материала и определяет нижний предел затухания оптического волокна.

Окно прозрачности

Величина коэффициента затухания имеют сложную зависимость от длины волны излучения. Пример такой спектральной зависимости приведен на рис. 4. Область длин волн с низким затуханием называется окном прозрачности оптического волокна. Таких окон может быть несколько, и именно на этих длинах волн обычно осуществляется передача информационного сигнала.

Рис. 4. Спектральная зависимость коэффициента затухания

Потери мощности в волокне обуславливаются также различными внешними факторами. Так, механические воздействия (изгибы, растяжения, поперечные нагрузки) могут приводить к нарушению условия полного внутреннего отражения на границе сердцевины и оболочки и выходу части излучения из сердцевины.

Поскольку приемник оптического излучения имеет некоторый порог чувствительности (минимальную мощность, которую должен иметь сигнал для корректного приема данных), затухание служит ограничивающим фактором для дальности передачи информации по оптическому волокну.

На рисунке 4 изображена кривая затухания света в кварцевом волокне. Из графика хорошо видны 3 минимума затухания – окна прозрачности. Исторически первое окно пропускания на 850 нм используется до сих пор в многомодовых волокнах для связи на небольшие расстояния. Затухания в нем 3-5дБ/км. Второе окно прозрачности на 1300-1310 нм имеет затухание на уровне 0.3-0.4дБ/км. Третье окно, самое популярное сегодня, с длиной волны 1500-1550 нм, имеет затухание около 0.22-0.3дБ/км. Свет с длинами волн короче 850 нм достаточно активно рассеивается, длиннее 1650 нм – уже сильно поглощается стеклом. Пики поглощения между окнами прозрачности обусловлены наличием примеси и OH-группами, колебательные уровни которых хорошо поглощают свет в этих диапазонах.

Для кварцевых световодов практический интерес представляют три окна прозрачности. Чаще всего это три длины – 850 нм, 1300 нм и 1500 нм
На сегодняшний день 850 нм обычно используется в многомодовых линиях с дальностью передачи до 3-5 км, все остальные длины волн (1310 нм и 1550 нм) – для одномодовых волокон с передачей на большие расстояния.

Дисперсионные свойства.

Дисперсия – это уширение оптического импульса, передаваемого по оптоволокну, во времени. При высокой частоте следования импульсов такое уширение на некотором расстоянии от передатчика приводит к перекрыванию соседних импульсов и ошибочному приему данных. Дисперсия ограничивает как дальность, так и скорость передачи информации.

На рисунке 5 видно как из-за уширения импульсов происходит перекрытие соседних импульсов.

Рис. 5. Перекрывание импульсов, вызывающее межсимвольную интерференцию

Виды дисперсии

 

Хроматическая дисперсия - подробней ...
Хроматическая дисперсия на порядки слабее и имеет другую природу, но ее приходится учитывать при расчете протяженных линий связи, особенно со скоростями более 10Гбит/с. Эффект стеклянной призмы, котрая свет раскладывает в радугу. Вот это и есть хроматическая дисперсия – зависимость показателя преломления от длины волны. Иными словами, каждая длина волны света имеет свою, отличную от других, скорость распространения. В волоконных линиях связи хроматическая дисперсия приводит к уширению светового импульса по времени. Любой лазер неидеален: он излучает не одну длину волны, а целый спектр волн, пусть и узкий. Т.е. каждый световой импульс, излученный лазером, имеет в своем составе некоторый набор различных длин волн. Каждая из этих волн, распространяясь по волокну, обладает собственной скоростью, отличной от других. Это приводит к тому, что на выходе из волокна импульс расширяется во времени. Конечно, этот эффект гораздо менее заметен, чем межмодовая дисперсия, но результат тот же – уширение импульса и потеря информации, ошибки. Хроматическое уширение импульса зависит от ширины спектра лазера, дальности передачи и коэффициента дисперсии волокна. Стандартное волокно имеет хроматическую дисперсию на уровне 18пс/(нм*км) для длины волны 1550нм. Поскольку в большинстве случаев ВОЛС состоят из стандартного волокна, компенсацию дисперсии приходится производить примерно через каждые 70-90км (справедливо для 10Gbit/s линков, организованных парой трансиверов).

Таким образом, дисперсия в оптическом волокне отрицательно сказывается как на дальности, так и на скорости передачи информации.